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It is the purpose of this paper to present a method for the computation of best
uniform approximation, through the replacement of the uniform norm by another
norm designated by " . lin and also by two pseudonorms designated by ps II . lin
and (A)" . lin • Existence, uniqueness, characterization and computation of best
approximations for II . lin , ps II . lin' and (A) II • lin are examined.

1. INTRODUCTION

Let X be a compact topological space and let C(X) denote the space of
continuous real-valued functions on X. Let II . [I be the uniform norm defined
on C(X) by 11/1/ = sup{1 j(x)I: x E X}. Finally, let lP be the m-dimensional
linear subspace of C(X) generated by some m fixed linearly independent
functions epi' i = 1,... , m.

The linear approximation problem can be stated as follows. GivenlE C(X),
find the elements ep* E lP such that

[11- ep* [I = inf{111 - ep II: ep E lP}.

Such a ep* is called a best approximation to I on X.
The problem is then usually broken into four parts:

(i) Do such elements ep* exist?

(ii) Characterize the ep*.
(iii) Establish uniqueness or nonuniqueness of best approximations.

(iv) Compute a best or a good approximation. (Even though best
approximations may not be computable, "good" approximations may be.)

*This paper is part of the author's Ph.D. Thesis at the University of Utah.
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DEFINITION 1. ep is said to be a Haar space (Tchebyshev space) if no
nonzero cP E ep has more than m - 1 zeros.

For univariate approximation, if ep is a Haar space, the Remez Algorithm
works nicely in obtaining the best approximation. For multivariate approxi­
mation, best approximations are not necessarily unique, and the Remez
Algorithm does not work.

This paper presents an alternative to existing methods of multivariate
approximation. In Section 2, I approximate the Loo or uniform norm, which
is designated by II . II throughout the paper, by a norm I designate by II . lin.
In Sections 3 and 4 I approximate the L oo norm by two pseudonorms
designated by ps II . lin and (A)II . lin. Computational results are given in
Section 5.

2. n-NORMS

The following norm was motivated by the search for a form of approxi­
mation which

(i) is nearly a best uniform approximation,

(ii) maintains the finite nature of the method of discretization while
making use of information about the given function f on all of the space in
question.

Let X be a compact measurable metric space with positive measure p,.
Let Un be a partition of X into n sets {Ein}f~l such that p,Ein ¥= 0, i = 1,..., n.
Assume for simplicity that p,(Ein nEt) = 0 for i ¥= j. For f E C(X), define

1I/IIn = max [( ~n f j2 dP,tl
1<;;i<;;n p, i E,n

It is easy to verify that II . lin is a norm. Frequently the norm II . lin will be
called the "n-norm."

Let {cPI ,... , cPm} be a set of linearly independent functions in C(X). Define
f!IJm = {peA, x) = L:l aicPi(x) where A = (al , ... , am) E Rm}. peA, x) will be
referred to as a generalized polynomial.

THEOREM 1. Given f E C(X), there exists a best approximation to f from
the class of generalized polynomials in the norm II . lin.

This is a corollary to the theorem which states: A finite-dimensional
subspace of a normed linear space contains at least one point of minimum
distance from a fixed point. (See Cheney [1, p. 20]).



k = 1,... , n.

APPROXIMATION THROUGH PARTITIONING

THEOREM 2. The best II . lin approximation to f from fYJm is unique.

Proof Let

[ If ]1/2rkn(A) = --yn (I(x) - peA, X»2 dfL ,
fL k Ek"
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Note. The superscript n will be deleted on rkn(A) when no ambiguity
arises from doing so.

If f E fYJm, then the result is obvious since the eP/s were assumed to be
linearly independent. For f 1= fYJm each rk(A) is strictly convex.

Let 8(A) = max1 ';;;k';;;n rk(A). Then 8(A) is strictly convex hence has a
unique minimum.

CHARACTERIZATION THEOREM. Let rk(A) and 8(A) be as above. Then A is
a minimum for 8 if and only if

e E H [f aiAik + Bk: riA) = 8(A)].
>~1

e denotes the origin of Rm. H[ ] denotes the "convex hull of" and

Al = [A~l' A~2 , , A~m]

Bk = [B1k, B2k, , Bmk]

where

Proof (necessity). Let

Then
m m 1/2

riA) = LL tA~jaiaj + ~ B/ai + Ck] .
>,,=1 >=1

Suppose e 1= HIL;:1 a;Al + Bk: rk(A) = 8(A)]. Then by the theorem on
linear inequalities (see Cheney [1, p. 19]), there is an h such that

for k E M = {i: riCA) = 8(A)}.
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Let ex = minkEM <:L. aiAl + Bk, h). We have ex > O. For k E M and A > 0,
look at

m m

[riA - "-h)]2 = L !A~lai - "-hi)(a; - "-h;) + L B/(ai - Ahi) + Ck
i,j=l i=l

m m

= [rk(A)]2 - L !A~lAaih; + AaA - A2hih;) - L Bl("-hi)
i,j=l i=l

= [riA)]2 - A<~ aiAik + Bk, h) + ;2 .f A~Ah;
1.=1 .,,=1

(noting that A~; = A~)

A2 m
~ 02(A) - Aex + 2 .L A~;hih;

z,3=1

< 02(A)

for A sufficiently small. Therefore rk(A - "-h) < o(A) for k E M. For k ¢= M,
rk(A) < o(A) hence remains so in some neighborhood of A. Therefore, there
is a A such that rk(A - "-h) < o(A) for each k.

(Sufficiency). Suppose A is not a minimum. Then there is an h such that
o(A - h) < o(A). As noted in the proof of uniqueness, 0 is convex. Thus

S(A - "-h) = 0«1 - A)A + A(A - h)) ~ (1 - A) S(A) + AS(A - h)

= o(A) - A(S(A) - S(A - h)) < S(A) for 0 < A < 1.

As a result riA - "Ah) ~ o(A - Ah) < o(A) = rk(A) for k E M. Written out,
this is

m

L tA~;(ai - Ahi) . (a; - "-h;)
i,i-l

m m m

+ ~ Bik(ai - Ahi) + Ck < .~ tA~aia; + ~ Bikai + Ck.
1=1 1.,1=1 1.=1

This gives
m m

L iA~l-ai"-h; - a;"-h; + A2hih;) + L B/(-"-hi) < O.
i,;=l i=l

After a change of sign and writing this in inner product notation, we obtain
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kEM.

j = 1,... , m.

It is easy to see that if this quantity is zero, then a small change in h will make
it positive if it is assumed L::l aiAl + Bk is not zero for k E M. In this case,
by the "theorem on linear inequalities,"

e 1= H [i aiAl + Bk: k EM].
,~1

(The following conclusion of the proof was suggested by the referee.)
If one of the vectors inside the brackets of H["'] were zero (implying

e E H[···]). Then we could have

m

o = L aiA~j + B jk

i=l

2 m

= fLE
k
n [i~ tkft aicPicPj dfL - fEkft fcPj dfL]

= i n f II: aicPi - fl cPj dfL,
fL k Ekft i=l \

This implies

for all BERm,

since the above equations are the well-known normal equations for approxi­
mation in the least-squares sense.

Hence II peA, .) - flln = rkn(A) ::::;; rknCB) ::::;; II PCB, .) - flln VB E Rm, i.e.,
A is a minimum for O.

The following theorem gives the basic properties of II . II... The first is
monotonicity. The second is its convergence to the uniform norm. These two
properties hold then with the following hypotheses.

THEOREM 3. Let the diameter of Ein = SUP",.lIEE.ft d(x, y) where d is the
metric for X and let •

o(Un) = max [diameter of Ein].
l<l<n

Assume Um is a refinement of Un, m > n. Then

(i) Ilflln::::;; Ilfllm ::::;; Ilfll,
(ii) Ilfll ~ Ilflin + w(on)
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where w is the modulus of continuity off on X and Sn is an abbreviation for
S(Un ).

Proof (i) It suffices to consider m = n + 1. Then without loss of
generality Ef+I = Ein, 1 ~ i ~ n - 1 and E~+I U E~t~ = Enn. Thus
r i

n = rf+1, 1 ~ i ~ n - 1. Suppose

for j = n, n + 1.

Then

This is a contradiction.
Therefore Ilflln ~ Ilflln+1' And Ilflln ~ II film follows inductively by

defining an appropriate sequence of refinements. Next,

1 f 1/2
Ilfllm = 1~~ [ II.E.m j2 dl-t]

",""",l~m r t Elm

[ If ]1/2
~ max ---em IIfl12 dl-t = Ilfll·

l";;I";;m I-t i Er

(ii) Pick Xo E X so that I f(xo)1 = Ilfll. Now consider the partition Un'
X o lies in Ein for some i. For x E Ein, I f(x) - f(xo)1 ~ w(Sn)' Hence
I f(xo)1 ~ If(x) I + w(Sn) and we obtain
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COROLLARY. If the sequence of refinements {Uk}~=1 is such that
limk-+'" Ok = 0, then

lim [Ifllk = Ilfll
k->'"

since W(Ok) -+ 0 as k -+ 00.

From now on, we assume the sequence of norms {II . lin} corresponds to
a sequence of refinements {Un} where On -+ 0 as n -+ 00.

The next two theorems provide the development needed to prove
Theorems 6, 7, 8, and 9 which are the important results of this paper.
Theorems 4,5, and 6 are analogous to results given by Cheney [I, pp. 85-87]
in his discussion of the method of discretization. Theorem 4 gives a simple
estimate on the growth of II peA, ')lln for fixed A, as n increases.

THEOREM 4. To each (X > I, there corresponds a 0 > 0 such that
II peA, ')11 < (X II peA, ')lln < (X II peA, ')llfor allgeneralizedpolynomials peA, x)
andfor any partition Un ofX with On ~ O.

Proof The second inequality holds by Theorem 3(i). Next let
a = min [I peA, ')11 on the compact set defined by L:l I ai I = 1. Since the
4>/s are linearly independent, a > O. Let

Q(O) = max [max I 4>i(X) - 4>i(y)I].
l<;;;,<;;;m d(ilJ.y)<;;;6

Q(O) -+ 0 as 0 -+ 0, since 4>i is uniformly continuous on X, for each
i = 1,2,... , m. Pick 0 > 0 so that Q(o) < a. And choose Un so that On ~ O.
Let peA, x) by any generalized polynomial. Let Xo E X be such that
I peA, xo)1 = II peA, ')11. Then Xo E Et for some i. By the mean value theorem
for integrals, pick x E Ein so that

[ If ]1/2I peA, x)1 = -y:n P2(A, u) dp. .
P. t Bin

Then
m

a L Iai I ~ II peA, ')11 = I peA, xo)1
i=1

~ I peA, xo) - peA, x)1 + I peA, x)j

~ L Iai I I 4>i(XO) - 4>i(X)I + II peA, ')lln

~ Q(On) L I ai I + [I peA, ')lln .
Hence
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II peA, ')11 ~ Q(~ ~~8?,n + II peA, ')lln

[
Q(a)]

= II peA, ')lln 1 + a _ Q(a) .

Since [1 + Q(a)/(a - Q(a))]~ 1+ as a~ 0 and is independent of A, the
result is established.

The following theorem shows how the n-norm of the error curve 1- P
converges to the uniform norm of the error curve I - P.

THEOREM 5. 111- peA, ')lln converges to III - peA, -)11 as an~ 0 according
to the inequality

111- peA, ')11 < 111- peA, ')lln + wean) + fJll peA, ')11 Q(an),

where fJ is independent 01I and P, w is the modulus 01 continuity 01I and Q is
as in Theorem 4.

Proof Let a be as in the previous theorem, i.e., a L I ai [ ~ II peA, ')11.
Let XoE X be such that I f(xo) - peA, xo)1 = III - peA, ')11. For some k,
XoE Ekn. By the mean value theorem for integrals, let x E E kn be such that

[
1 J ]1/2I/(x) - peA, x)1 = ~ (f(u) - peA, U))2 dl-' .

I-' k E~n

Then

III - peA, ')11 = I/(xo) - peA, xo)1

~ I/(xo) - I(x) I + I/(x) - peA, x)1 + I peA, x) - peA, xo)1

~ wean) + III - peA, ')lIn + L [ai II rP/x) - rPi(XO)['

But

L [ai I I rPi(X) - rPi(XO)I ~ L Iai I m~x I rPi(X) - rPi(XO)I,
~ a-I II peA, ')11 Q(an).

Let fJ = a-I.
The next theorem shows that the uniform norm of the error curve

1- P(An , .) converges to the uniform norm of the error curve I - peA, .)
where P(An , .) is the best n-norm approximation ofIon X and peA, .) is a
best uniform approximation to I on x.
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THEOREM 6. If P(An , x) is the best approximation to f(x) in the norm
II . lin and P(A, x) is a best approximation in II . II, then II! - P(A n , ')11 converges
to II! - P(A, ')11 according to the estimate

II! - P(An , ')[1 - II! - P(A, ')11 :'( w(on) + 2ex{3I1!I[ Q(on)

where ex, {3, and Q are as in previous theorems.

Proof

II! - P(A n , ')[In :'(1 II! - P(A, ')lln :'(2 II! - P(A, ')11

:'(3 II! - P(An , ')11

where 1 follows by definition of P(An , '), 2 follows by Theorem 3(i), and
3 by the definition of P(A, .). Therefore

II! - P(An , ')11 -I[! - P(A, ')11 :'( I[! - P(An , ')11 -II! - P(An , ')lln

:'( w(on) + (3 [I P(An , ')[IQ(on)

by Theorem 5.

II P(An , ')lln :'( II P(An , .) - !lln + 11!lln :'( 110 - !lln + 11!lln :'( 211!11·

Using Theorem 4, we obtain I[ P(An , ')11 :'( ex II P(An , ')![n :'( 2ex I[!I[. There­
fore II! - P(An , ')11 - II! - P(A, ')11 :'( w(on) + 2ex{3II!IIQ(on)'

I obtain next an estimate on the total approximation process. The process
is that of approximating II . II by II . lin and approximating f(x) by P(An , x)
in the norm II . lin.

THEOREM 7.

where a is as in the previous theorems. Moreover, II! - P(An , ')lln converges
monotonically to II! - P(A, -)11.

Proof Let Wn be the modulus of continuity of f(x) - P(An ,x). Since
[I! - P(A, ')11 :'( II! - P(A n ,')11 and by Theorem 3(ii) II! - P(An , ')11 :'(
II! - P(An , ')lln + Wion), we have
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Ilf - peA, ')11 - Ilf - P(An , ')lln

~ Wn(On) = sup{lf(x) - P(An , x) - [fey) - P(A n , Y)]I: d(x, y) ~ on}

~ w(On) + Q(On) L 1ani I·

From Theorem 4, we again use the estimate

and since as shown in Theorem 6, II P(A n , ')lln ~ 211fll, we obtain

The convergence is monotone since Ilf - P(An , ')lln ~1 Ilf - P(Am , ')lln ~2

Ilf - P(Am , ')llm for m > n where 1 follows by definition of P(An , x) and 2
follows by Theorem 3(i).

Remark. The value of this theorem lies in the fact that in computing
P(An , x), Ilf - P(An , ')lln is a good estimate for Ilf - peA, ')11. I make use
of this fact in Section 5. (Actually no computation was performed for the
n-norm, however, it will be shown that the above observation carries over to
the pseudo norm (A)[I . I[n , yet to be defined, which was used in computation.)

The following theorem is a simple modification of a theorem proved by
Weinstein [3].

THEOREM 8. Let p = inf{llf - peA, ')11: A E Rm} and .sf = {A E Rm:
Ilf - peA, x)11 = p}. Given any E > 0, there exists a 0 = O(E) > 0 such that
for any Un with On ~ 0, then a(An,.sf) = inf{a(An , A): A E.sf} < E where
a denotes the usual Euclidean metric on Rm.

Proof By Theorem 6, I[f - P(An , ')11 ~ p + K(on) where K(on) -+ 0 as
On -+ O. Suppose there is a subsequence {An) such that a(An, ' .sf) ?" E for
each i.

Since I[ P(A ni , ')11 ~ Ilfll + Ilf - P(A ni , ')11 ~ Ilfll + p + K(on), we know
{P(A n . , X)};:l is a bounded subset of a finite-dimensional space and therefore
has a limit point P(A*, x). Then Ilf - P(A*, ')11 ~ p which implies A* E.sf.
However, a(An, ,.sf) ?" E for i = 1,2,... implying 0 = a(A*, .sf) ?" E.

The following is a corollary whose proof is contained in the proof of
Theorem 8.
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COROLLARY 1. There exists a subsequence of {P(An , X)}~~1 which con­
verges uniformly to P(A*, x) where P(A*, x) is some best uniform approx­
imation to f(x).

The next corollary indicates that Corollary I can be strengthened to read
"sequence" instead of "subsequence" iffhas the unique best approximation
P(A*, x).

COROLLARY 2. Iff has the unique best uniform approximation P(A*, x)
then limn~oo II P(An , .) - P(A*, ')11 = O. For this corollary, an estimate on the
rate of convergence can be obtained if the 1>/s are assumed to satisfy theHaar
condition. Because then

Ilf - PCB, ')11 -Ilf - P(A*, ')11 ~ y II PCB, .) - P(A*, ')11

by the "strong unicity theorem." Using Theorem 6 again, we obtain
II P(An , .) - peA *, ')11 ~ y-l[W(On) + 2exfJllfIID(on)] where y is dependent
on J, whereas, ex and fJ are not.

THEOREM 9. Let cP = {1>1' 1>2 ,oo.} be afundamental set in C(X). Then there
is a sequence of partitions {Um }~-1 such that the generalized polynomial of
"degree n" of best approximatio~ t~! in the mn-norm converges uniformly to!
as n ---+ 00.

Proof For each set {1>1 '00" 1>n}, a constant fJn = a-;.1 may be computed as
in Theorem 5, where an = max{11 1::=1 ai1>i II: 1: I ai I = I}. Pick ex > 1. Then
for each n there is a partition Um with mesh Om so that Om corresponds to ex
as obtained in Theorem 4. As;uming Om ---+ b sufficientiy fast gives that
exfJnDnCom ) ---+ O. n

From the fundamentality of CP, it follows that there are vectors {Ci }:1 and
polynomials PnCCn , x) of "degree n" such that limn~oo II! - Pn(Cn , ')11 = O.
If we designate the polynomial of degree n of best approximation in the
mn-norm by P nCAm ,x) and a polynomial of degree n of best uniform
approximation by P:(A, x), then by Theorem 6

II! - PnCAmn , ')11 ~ II! - Pn(A, ')11 + w(on) + 2exfJn 11!IID(on)

~ I[! - Pn(Cn , ')11 + w(on) + 2exfJn II!II D(on)'

And since the R.H.S. tends to zero as n ---+ 00, the result is established.
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3. ALTERNATIVES TO THE n-NORM

In practice it is easier to use the following pseudonorm to facilitate
computation. Define

It should be noted that I may be giving up speed of convergence in choosing
to work with ps II . lin since it is easily verified that

ps 1IIIIn ~ 1IIIIn .

However, this choice reduced the problem to looking at error surfaces which
are piecewise hyperplanes rather than at surfaces which are composed of
quadratic hypersurfaces. This is because the residuals rk(A) for ps II . lin
represent hyperplanes whereas the residuals rk(A) for II . lin are quadratic
forms. Therefore choosing ps II '11n for computation reduces to a problem
which has already been solved, i.e., finding the minima for polytopes which
are surfaces which are piecewise hyperplanes.

I now present the development for ps II . lin, which proceeds like that for

II '1In'

THEOREM 10. Given IE C(X), there exists a best approximation to Ilrom
fYJm in the pseudonorm ps II . lin.

Proof It is easily verified that "pseudonorm" can replace "norm" in the
following statement: A finite dimensional linear subspace of a normed
(pseudonormed) linear space contains at least one point of minimum distance
from a fixed point.

As is usually the case for pseudonorms, best approximations prove to be
nonunique. The following simple example illustrates this point.

Let X = [-1,1],1= x - 1/2, x ~ 0; -x - 1/2, x < O. Let ep1 = 1,
ep2 = x, eps = x2and U2= £12 U £22 where £12 = [-1,0] and £22 = [0, 1].
Let fL be one-dimensional Lebesgue measure. Then ex[x2 - 1/3] is a best
approximation to I for each ex E [0, 1].

Let

and

Then

ps III - P(A, ')lln = max II: Cikak - hi \.
l,,;;t";;n k=1
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Let ri(A) = L;~l Cikak - hi' Given a vector A, let alA) = sgn ri(A). Set
Ci = [Cil' Ci2 ,... , Cim] and designate ps Ilf - P(A, ·)11 by o(A). Then we
obtain the well-known

CHARACTERIZATION THEOREM. A vector A is a minimum for 0 if and
only if the origin of m-space lies in the convex hull of the set of vectors
{aiCi: I ri(A)I = o(A)}.

THEOREM 11. (i) ps Ilflln :( ps Ilfllm :( Ilfll, n < m.

(ii) Ilfll < ps Ilflln + w(on) for On sufficiently small.

Proof (i) The proof is entirely analogous to that of Theorem 3(i).

(ii) Ilfll = 0 is trivial. Assume Ilfll > O. Let Xo E X be such that
If(xo)I = IIfll. For some i, XoE Ein. For all x E Ein and On sufficiently small,
f(x) does not change sign. Then

Ilfll - W(On) = i.n f If(xo) I - w(on) dfl-
fI- t Ei

n

:( i.n f If(x) I dfl-
fI- t Ei

n

= fl-iin I fEi/(X) dfl-I :( ps Ilflln .

Remark. Theorems 4-9 hold with "II . lin" replaced by "ps II • lin" and
"the" best approximation replaced by "a" best approximation.

4. CHANGES IN ps II . lin NECESSITATED BY COMPUTATION

It would be desirable for the preceding estimates to go through essentially
unchanged when in the computational process, the integral is computed by
an integration formula. It is clear that given a particular integration formula
and assuming the necessary conditions on f and the 4>/s in order to obtain
an error bound, then as the mesh On of Un goes to zero, the error in the
integration also goes to zero. Hence only the error bound for the formula
need be combined with the estimate. However, if the formula Jt = L WJi
has nonnegative weights and has precision zero, then the weights and the
points where the weights are to be taken are associated with a positive
measure fI-. More precisely, let

(A) IIflln = max IL W~dik I
l<k<n i
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with Li W;k = 1 for each k. Then (A)II . II is a pseudonorm on C(X). The point
of note is that the Wfk correspond to a positive measure J-Ln , and hence the
measure is now varying with the partition Un' We obtain existence and
nonuniqueness the same way as for ps II . lin. The characterization theorem
is also similar. But as soon as Um is introduced as a refinement of Un, Um
must be acceptable in terms of the geometry for which the integration scheme
is designed. Hereafter it will be assumed that this condition is satisfied.

The following example shows that the monotonicity part of Theorem 3(i),
i.e., (A)II/!ln :S;; (A)ll/llm, n < m does not necessarily hold. Let UI = {[O, 7T]},
U2 = {[O, 71'/2], [71'/2, 7T]} and lex) = sin x. Let the rule be Simpson's with
h = 71'/2 for UI and h = 71'/4 for U2 • Then (A)11 sin xiiI = 4/6 and
(A)II sin x 112 = 2 v2/6 < 4/6. Therefore (A)II . lin cannot replace II . lin in this
part of the theorem. However, it does follow that (A)ll/lin :S;; II1II since

rk = L I W~dik I :S;; L W~k Ihk I :S;; max Ihk I L Wik = m~x Ihk I :S;; 11/11.
i ti'

Theorem 3(ii) which states II1II :S;; 1I/IIn + w(on) also holds for (A)ll/lln.
Theorems 4-9 are true with II . lin replaced by (A)[I . lin with the exception that
the monotone convergence in Theorem 7 must be deleted.

5. COMPUTATION AND CONCLUSIONS

The following examples were calculated on the Univac 1108 computer at
the University of Utah computer center. The computation was carried out
using the pseudonorm (A)II '1In' The computation of best approximations
was accomplished by taking the systems of linear inequalities to be solved and
placing them into linear programming form. The residuals riCA) are of the
form L;:l cx;;aj - fJi where A = [al , ... , am] and the CXi;'S and fJ;'s are known.
We seek the smallest number E such that maxI';;;i';;;n I riCA)! :S;; E. This
"usually" overdetermined system can be placed in linear programming form
by adding the appropriate "slack" variables. The integration formulas used
were Simpson's rule for X one-dimensional and Simpson's product rule for X
two-dimensional. In each of the following tables, the fifth column headed by
the letters eye. indicates how many matrix pivoting operations were needed
to compute the best approximation. All values are given to four decimal
places.

EXAMPLE 1. X = [0, 1], lex) = x2, epi(X) = 1, ep2(X) = x.

![i-I i ] InU = ---
n n' n i~I
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TABLE 1

Norm Best approximation 11'11 Error (A) II • lin Error Cye.

11'11 x - 0.1250 0.1250

(A) II '1110 x - 0.1467 0.1467 0.0900 28

(A) II . 1120 x - 0.1367 0.1367 0.1125 53

(A) II '1150 x - 0.1299 0.1299 0.1200 128

Note that the best (A)II . lin approximations appear to be converging slowly
to the best uniform approximation. In the latter part of this section, an
algorithm is suggested which may speed up the convergence of this procedure.

EXAMPLE 2. X = [-1, l],f(x) = xS, 4>1(X) = 1, 4>2(X) = x, 4>3(X) = x2,
4>lx) = x3, 4>s(x) = x4.

Un = l[-1 + 2(i - 1) , -1 + ~] In .
n n \i~1

TABLE 2

Norm

11'11

(A) II '1120

(A) II '1135

(A) II '1150

Best Approximation

1.2500x3 - 0.3125x

1.14OOx' - 0.2597x

1.1822x' - 0.2790x

1.2015x' - 0.2883x

11'11 Error

0.0625

0.1197

0.0968

0.0868

(A) II • lin Error

0.0475

0.0538

0.0563

Cye.

56

91

122

For n = 50, the associated linear programming problem consists of
102 equations in 214 unknowns. For n > 50, the problems becomes too
unwieldy for the capacity of the Univac 1108.

EXAMPLE 3. X = [-1,1] x [-1,1], f(x,y) = X3y3, 4>1 = I, 4>2 = X,
4>3 = y, 4>4 = x2, 4>5 = xy, 4>6 = y2, 4>7 = x3, 4>8 = x2y, 4>9 = xy2, 4>10 = y3,
4>11 = x4, 4>12 = x3y, 4>13 = X2y 2, 4>14 = xy3, 4>15 = y4. Un2 was obtained by
taking cross products of intervals of the form [-1 + 2(i - I)/n, -I + 2i/n].

The convergence of Pn to P in Example 3 seems to be slower than that
obtained in Example 2. One possible explanation is that the mesh for
Example 3 is much larger than that for Example 2.
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TABLE 3

Norm Best approximation II '11 Error (A) II • lin Error Cye.

11'11 0.5000x3 + 0.75OOxy' - 0.3750x 0.1250

(A) II '1196 0.3333x3 + 0.52ooxy' - 0.1733x 0.3200 0.0409 74

(A) II '11s6 0.3704xs + 0.5556xy' - 0.2063x 0.2803 0.0463 116

(A) II '11.9 0.3742xS + 0.5918xy' - 0.2214x 0.2654 0.0504 141

Each of Examples 1, 2, and 3, illustrate Corollary 2 to Theorem 8 of
Section 2 which states that if the best approximation peA, x) to f(x) in II . II is
unique, then the sequence {P(A n , x)} of best approximations to/in (A)II '11n
converges uniformly to peA, x).

Each example in this section illustrates Theorems 6 and 7 of Section 2
which show that the uniform norm of the error functions 1 - P(A n , .)

converges to the uniform norm of 1 - peA, .) from above (Column 3 in
the tables) and that (A) II '11n ofl - P(An , .) converges to the uniform norm
ofl - peA, .) from below (column 4 in the tables).

EXAMPLE 4. X = [0, 1] X [0, l],j(x, y) = xy, rpl = 1, rp2 = x, rp3 = y,
rp4 = x2, rp5 = y2. Un 9 was obtained by taking cross products of intervals of
the form [(i - l)/n, i/n].

The set of best uniform approximations to1are of the form a.it + bl2a > 0,
b > 0, a + b = 1 and

.it = (l/2)(x2+ y2) - 1/4, 12 = X + y - (1/2)(x2+ y2) - 1/4.

In particular, (l/2)[.ft +12] = x/2 + y/2 - 1/4 is a best approximation
and it is listed in the table.

TABLE 4

Norm Best approximation 11'11 Error (A) II • lin Error Cye.

11'11 0.5000x + 0.5000y - 0.2500 0.2500

(A) II '1116 0.5000x + 0.5000y - 0.2500 0.2500 0.1406 38

(A)II'lb 0.5000x + O.SOOOy - 0.2500 0.2500 0.1640 56

(A) II • 11,9 0.5000x + 0.5000y - OJ 854 0.3146 0.1837 104
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The result in row 4, column 3 of Table 4 is understandable since Theorem 6
does not guarantee that Ilf - P(An ,')11 converges monotonically to
IIf - peA, ')11.

EXAMPLE 5. X = [0, 1] X [0, l],f(x, y) = e"'Y, CPl = 1, CP2 = X, CPa = y.
Un2 was obtained as in Example 4.

TABLE 5

Norm Best approximation 11'11 Error (A) II . II" Error Cyc.

(A) II '1116 0.5905 + 0.7621x + 0.7621y 0.6041 0.2347 40

(A) II . 1125 0.5864 + 0.7775x + 0.7775y 0.6399 0.2675 58

(A) II '11•• 0.5816 + 0.7973x + 0.7973y 0.5421 0.3097 108

The fact that the convergence in the examples is slow, motivates a search
for a more intelligent method of partitioning which will speed up the rate of
convergence. Since it was shown that (A) I[f - P(An , ')11.. ~ Ilf - peA, ')11,
we would like to choose the partitions so that the error in (A) II . lin rises to
meet the error in II . II as rapidly as possible. This problem is investigated in (4).

As an alternative to choosing a large value of n to obtain the desired
approximation, I propose the following algorithm which begins with n small.

ALGORITHM. Start with a partition Uno where no is small and compute the
best (A) II . lin approximation. Find the members of the partition where theo
moduli of the residuals riCA) take on their maximum value. Subdivide these
members according to some prescribed scheme and repeat the process with the
new partition Un obtaining Un ,etc.

1 2
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